Abstract

In line with the development of industrial society, wastewater has caused multiple environmental problems. Contaminants of emerging concern (CECs) in water and wastewater are persistent, and for this reason they can cause serious problems for human health, animal health, and the whole environment. Therefore, it is absolutely necessary to apply efficient methods for the treatment of wastewater that has a high concentration of organic compounds. Over recent years, the prescribed and non-prescribed consumption of antibiotics has increased significantly worldwide. Large quantities of antibiotics are discharged into wastewater because of their incomplete absorption by living organisms. However, even small concentrations present in aquatic environments represent a major risk to human health and environment protection. This paper presents the main advantages and disadvantages of advanced oxidation processes, and the current state and new perspectives in the field of environment protection. This study summarizes data from the most recent specialized scientific literature that focuses on the topic of advanced oxidation processes, thus bringing all these aspects to the attention of researchers in a single work that adds comments and interpretations related to the presented processes. Advanced oxidation processes (AOPs) are often used in the treatment of different types of wastewater. AOPs are based on physicochemical processes that create significant structural changes in chemical species. The majority of antibiotics may be eliminated using physicochemical processes, such as photo-Fenton oxidation, photolysis, ozonation, electrooxidation, heterogeneous catalysis, and other bioprocesses. In comparison to conventional chemical processes, AOPs provide superior oxidation efficiency, ideal operating costs, and zero secondary pollutants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call