Abstract

BackgroundThe 39 mammalian Hox genes show problematic patterns of functional overlap. In order to more fully define the developmental roles of Hox genes it is necessary to remove multiple combinations of paralogous and flanking genes. In addition, the downstream molecular pathways regulated by Hox genes during limb development remain incompletely delineated.ResultsIn this report we examine limb development in mice with frameshift mutations in six Hox genes, Hoxa9,10,11 and Hoxd9,10,11. The mice were made with a novel recombineering method that allows the simultaneous targeting of frameshift mutations into multiple flanking genes. The Hoxa9,10,11−/−/Hoxd9,10,11−/− mutant mice show a reduced ulna and radius that is more severe than seen in Hoxa11−/−/Hoxd11−/− mice, indicating a minor role for the flanking Hox9,10 genes in zeugopod development, as well as their primary function in stylopod development. The mutant mice also show severe reduction of Shh expression in the zone of polarizing activity, and decreased Fgf8 expression in the apical ectodermal ridge, thereby better defining the roles of these specific Hox genes in the regulation of critical signaling centers during limb development. Importantly, we also used laser capture microdissection coupled with RNA-Seq to characterize the gene expression programs in wild type and mutant limbs. Resting, proliferative and hypertrophic compartments of E15.5 forelimb zeugopods were examined. The results provide an RNA-Seq characterization of the progression of gene expression patterns during normal endochondral bone formation. In addition of the Hox mutants showed strongly altered expression of Pknox2, Zfp467, Gdf5, Bmpr1b, Dkk3, Igf1, Hand2, Shox2, Runx3, Bmp7 and Lef1, all of which have been previously shown to play important roles in bone formation.ConclusionsThe recombineering based frameshift mutation of the six flanking and paralogous Hoxa9,10,11 and Hoxd9,10,11 genes provides a resource for the analysis of their overlapping functions. Analysis of the Hoxa9,10,11−/−/Hoxd9,10,11−/− mutant limbs confirms and extends the results of previous studies using mice with Hox mutations in single paralogous groups or with entire Hox cluster deletions. The RNA-Seq analysis of specific compartments of the normal and mutant limbs defines the multiple key perturbed pathways downstream of these Hox genes.Electronic supplementary materialThe online version of this article (doi:10.1186/s12861-015-0078-5) contains supplementary material, which is available to authorized users.

Highlights

  • The 39 mammalian Hox genes show problematic patterns of functional overlap

  • The 39 mammalian Hox genes are arranged in four clusters (A-D)

  • In this report we examine limb development in mice with frameshift mutations in six Hox genes, Hoxa9,10,11 and Hoxd9,10,11

Read more

Summary

Introduction

The 39 mammalian Hox genes show problematic patterns of functional overlap. Mutations of Drosophila Hox genes often result in dramatic homeotic transformations of body parts, with the morphology of one segment altered to resemble that of another. In many developing systems the Hox genes show nested domains of overlapping expression. This led to the suggestion that combinatorial codes of Hox expression could drive segment identity determination. Consistent with this, Hox mutations can cause partial or complete homeotic transformations in the development of the hindbrain, reproductive tracts, and axial skeleton. Mutational analysis shows that most of the Hox genes of paralogous groups 3–13 play roles in defining segment identities of the axial skeleton [8]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.