Abstract

Background: The molecular mechanisms underlying gastric cancer (GC) progression are unclear. The authors examined key genes associated with the prognosis and tumor-infiltrating immune cells in patients with GC. Materials and Methods: Gene expression omnibus (GEO) was used to filter and obtain GC-related differentially expressed genes (DEGs). The molecular functions, biological processes, and cellular components of the DEGs were subjected to enrichment analysis. Protein-protein interaction networks of proteins encoded by the DEGs were analyzed using STRING. The authors also identified hub genes of GC, as well as their expression levels in GC and their relationship with patient prognosis. The relationship between hub genes and tumor-infiltrating immune cells was analyzed by Tumor IMmune Estimation Resource. Results: Six GEO datasets were included in this study, and 265 DEGs were identified. These DEGs were enriched in different signaling pathways and had different biological functions. Six hub genes were potentially significantly related to the molecular mechanisms of GC (TOP2A, FN1, SPARC, COL3A1, COL1A1, and TIMP1). These genes are potential markers of prognosis. Five hub genes were significantly positively correlated with the number of macrophages, neutrophils, and dendritic cells. Conclusions: The authors provide a theoretical basis for exploring the molecular regulation mechanism underlying GC and identifying therapeutic targets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call