Abstract
Biological soil crusts (BSCs) are a widespread photosynthetic ground cover in arid and semiarid areas. They have many positive ecological functions, such as increasing soil stability, and reducing water and wind erosion. Using artificial technology to achieve the rapid development of BSCs is expected to become a low-cost and highly beneficial ecological restoration measure. In the present study, typical moss-dominated crusts in a region characterized by mobile dunes (Mu Us Sandland, China) were collected, and a 40-day cultivation experiment was performed to investigate key factors, including watering frequency, light intensity and a nutrient addition, which affect the rapid development of moss crusts and their optimal combination. The results demonstrated that watering frequency and illumination had a significant positive effect (P=0.049, three-factor ANOVA) and a highly significant, complicated effect (P=0.000, three-factor ANOVA), respectively, on the plant density of bryophytes, and a highly significant positive effect on the chlorophyll a and exopolysaccharide contents (P=0.000, P=0.000; P=0.000, P=0.000; one-way ANOVA). Knop nutrient solution did not have a significant positive but rather negative effect on the promotion of moss-dominated crust development (P=0.270, three-factor ANOVA). Moss-dominated crusts treated with the combination of moderate-intensity light (6,000 lx) + high watering frequency (1 watering/2 days) - Knop had the highest moss plant densities, while the treatment with high-intensity light (12,000 lx) + high watering frequency (1 watering/2 days) + Knop nutrient solution had higher chlorophyll a contents than that under other treatments. It is entirely feasible to achieve the rapid development of moss crusts under laboratory conditions by regulating key factors and creating the right environment. Future applications may seek to use cultured bryophytes to control erosion in vulnerable areas with urgent needs.
Highlights
Biological soil crusts (BSCs) are ecological pioneers and play very important ecological functions in the desert ecosystem
BSCs can be divided into cyanobacteria crusts, lichen crusts, and moss crusts according to the dominating species [9], and the successional order is cyanobacteria crusts, followed by lichen crusts and moss crusts [10], with moss crusts being the advanced stage under favorable site conditions [11,12]
Our previous study showed that moss crusts (Bryum argenteum dominated) developed best in terms of plant density and height at 15°C, compared to 25°C or 35°C [26]
Summary
Biological soil crusts (BSCs) are ecological pioneers and play very important ecological functions in the desert ecosystem. Because of their drought and cold resistance, they are widely distributed in arid and semi-arid regions. They can fix sands by aggregating surface soil [1,2], change soil nutrient cycling [3], accumulate soil nutrients [4,5], improve the soil micro-structure [6], and lay the foundation for ecosystem development [7,8]. Moss crusts can fix carbon (C) through photosynthesis [13], increase the organic matter content in soils [14], fix sands [15], provide better fertility for the subsequent germination of vascular plant seeds, and engineer a solid foundation for the establishment of vascular plants [3,16]
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have