Abstract
ABSTRACT The regenerative thermal oxidizer (RTO) is widely used in the treatment of volatile organic compounds (VOCs). The RTO with three packed beds has a backflushing process, which makes its operation quite different from common regenerative combustion devices with two beds. However, the published research regarding this kind of RTO was far from sufficient. Thus, models based on an industrial RTO with three beds were developed. Temperature distributions for the RTO were simulated based on the standard k-ε model, heat balance model, DO model, and finite chemical-rate/eddy-dissipation model after model validation. Four operating parameters were selected, and these parameters have a significant impact on key factors, such as the oxidation chamber temperature (OCT), outlet temperature, and thermal efficiency. Multi-factor analysis was performed by orthogonal experiment and regression analysis of the key factors, revealing that different parameters imposed various impacts on the key factors. A linear relationship between the OCT and RTO outlet temperature was identified, yielding a useful formula for engineering applications. Implications: A regenerative thermal oxidizer (RTO) used in volatile organic compounds (VOCs) treatment was studied between engineering and simulation. The simulation results showed a few error compared to the engineering ones. Single parameter simulations, orthogonal experiments and regression analysis were applied to study key factors such as oxidation chamber temperature, outlet temperature, and thermal efficiency. The influence and regularity of the four main operating parameters on the key factors were quite different. The best condition for this RTO was got. The linear formula of the oxidation chamber temperature and the outlet temperature are obtained, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.