Abstract
As a network of advanced-era gravitational wave detectors is nearing its design sensitivity, efficient and accurate waveform modeling becomes more and more relevant. Understanding of the nature of the signal being sought can have an order unity effect on the event rates seen in these instruments. The paper provides a description of key elements of the Spectral Einstein Code (SpEC), with details of our spectral adaptive mesh refinement (AMR) algorithm that has been optimized for binary black hole (BBH) evolutions. We expect that the gravitational waveform catalog produced by our code will have a central importance in both the detection and parameter estimation of gravitational waves in these instruments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.