Abstract
Optical microresonators supported whispering gallery modes (WGMs) are one of the most cost-effective platforms for optical frequency comb generated due to their advantages of ultra-high quality ( <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">Q</i> ) factor and ultra-low mode volume. In this paper, we report a portable and robust packaged silica spherical microcavity by melting the end of a standard single-mode fiber with ultra-high <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">Q</i> factor up to <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">${10}^8$</tex-math></inline-formula> , and theoretically and experimentally demonstrate a broadband optical frequency comb (OFC) generation including Kerr OFC and stimulated Raman comb. Kerr OFCs are separated by one, two, eight and twelve free spectral ranges corresponding to 1.4, 2.8, 11.2, and 16.8 nm, respectively. The transition between Kerr OFC and stimulated Raman comb is achieved by changing the pump laser power and the detuning frequency resulting from gain competition between modulation instability and Raman gain. Benefitting from the dispersion control and ultra-high <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">Q</i> factor persistence in our packaged microcavity, OFC can be adjusted continuously covering from S-band to C-band, L-band and U-band. We also explain these results by numerical simulations using a model framework combined with the Lugiato-Lefever equation and Raman response function.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have