Abstract

The well-known Kerr effect in isotropic fluids consists in the appearance of uniaxial orientational order and birefringence that grows as the square of the applied electric field. We predict and observe that at a high electric field, the Kerr effect displays features caused by the nonlinear dependence of dielectric permittivity on the field-induced orientational order parameter. Namely, the field-induced birefringence grows faster than the square of the electric field and the dynamics of birefringence growth slows down as the field increases. As a function of temperature, the field-induced birefringence is inversely proportional to the departure from an asymptotic critical temperature, but this temperature is no longer a constant (corresponding to the lower limit of the supercooled isotropic phase) and increases proportionally to the square of the electric field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.