Abstract

Multi-view subspace clustering has been an important and powerful tool for partitioning multi-view data, especially multi-view high-dimensional data. Despite great success, most of the existing multi-view subspace clustering methods still suffer from three limitations. First, they often recover the subspace structure in the original space, which can not guarantee the robustness when handling multi-view data with nonlinear structure. Second, these methods mostly regard subspace clustering and affinity matrix learning as two independent steps, which may not well discover the latent relationships among data samples. Third, many of them ignore the different importance of multiple views, whose performance may be badly affected by the low-quality views in multi-view data. To overcome these three limitations, this paper develops a novel subspace clustering method for multi-view data, termed Kernelized Multi-view Subspace Clustering via Auto-weighted Graph Learning (KMSC-AGL). Specifically, the proposed method implicitly maps the multi-view data from linear space into nonlinear space via kernel-induced functions, so as to exploit the nonlinear structure hidden in data. Furthermore, our method aims to enhance the clustering performance by learning a set of view-specific representations and their affinity matrix in a general framework. By integrating the view weighting strategy into this framework, our method can automatically assign the weights to different views, while learning an optimal affinity matrix that is well-adapted to the subsequent spectral clustering. Extensive experiments are conducted on a variety of multi-view data sets, which have demonstrated the superiority of the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.