Abstract

Kernel-based methods have become popular in machine learning; however, they are typically designed for numeric data. These methods are established in vector spaces, which are undefined for categorical data. In this paper, we propose a new kind of kernel trick, showing that mapping of categorical samples into kernel spaces can be alternatively described as assigning a kernel-based weight to each categorical attribute of the input space, so that common distance measures can be employed. A data-driven approach is then proposed to kernel bandwidth selection by optimizing feature weights. We also make use of the kernel-based distance measure to effectively extend nearest-neighbor classification to classify categorical data. Experimental results on real-world data sets show the outstanding performance of this approach compared to that obtained in the original input space.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.