Abstract
Glucose isomerase (GI) is crucial in high-fructose corn syrup production. This study introduces a novel approach to enhance GI stability and reusability through whole-cell encapsulation of Streptomyces olivochromogenes PTCC 1457 in hybrid microbeads, utilizing keratin as a multifunctional stabilizer and cross-linker. Optimal bead formation was achieved using 2 % alginate, 2-3 % CaCl2, and 2.5 % keratin at pH 7.0 and 37-40 °C. Keratin played a vital role in forming a robust and flexible matrix. Immobilization in keratin-alginate-biomass beads maintained GI activity (655 GIU·g-1) comparable to free enzyme (650 GIU·g-1), while silicate incorporation reduced activity to 234 GIU·g-1. The immobilized enzyme exhibited enhanced stability over a wider pH (6-9) and temperature (4-60 °C) range compared to the free enzyme. Importantly, the immobilized GI maintained 80 % of its initial activity after 20 reaction cycles. Thermogravimetric analysis, scanning electron microscopy, energy dispersive X-ray spectroscopy, and tensile testing confirmed the formation of hybrid beads with improved thermal and mechanical stability. This novel immobilization strategy, leveraging keratin's unique properties, offers a promising approach for enhancing GI stability, reusability, and storage longevity, potentially improving its industrial applicability in high-fructose corn syrup production.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International journal of biological macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.