Abstract

Thermal and dynamic mechanical properties of kenaf natural fiber reinforced polypropylene (PP) biocomposites were examined to compare the effects of natural fiber treatment by electron beam irradiation (EBI) and alkalization. The alpha cellulose contents, the functional groups on the surfaces and the thermal stability of the untreated and treated kenaf fibers were studied. Kenaf fiber/polypropylene(PP) biocomposites were fabricated by means of a compression molding technique using chopped kenaf fibers treated with electron beam (EB) dosages of 100, 200, 500 kGy or with NaOH concentrations of 2, 5, 10 wt%, respectively. The thermal stability, the dynamic mechanical and the interfacial properties of untreated and treated kenaf/PP biocomposites were also investigated through a thermogravimetric analysis, a dynamic mechanical analysis and a fractographic observation, respectively. The results show that the characteristics of kenaf fibers and biocomposites depended on the different treatment level with the EB dosages or on the NaOH concentrations used. In this study, the modification of kenaf fiber surfaces at 200 kGy EBI and treatment with 5 wt% NaOH was most effective for improving the performance of kenaf/PP biocomposites. This study suggests that EBI can be used for modification of natural fiber as an environmentally friendly process and contribute to an improvement in the performances of kenaf/PP biocomposites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call