Abstract
Kelvin waves (kelvons), the distortion waves on vortex lines, play a key part in the relaxation of superfluid turbulence at low temperatures. We present a weak-turbulence theory of kelvons. We show that nontrivial kinetics arises only beyond the local-induction approximation and is governed by three-kelvon collisions; a corresponding kinetic equation is derived. We prove the existence of Kolmogorov cascade and find its spectrum. The qualitative analysis is corroborated by numeric study of the kinetic equation. The application of the results to the theory of superfluid turbulence is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.