Abstract
The McLeod syndrome is an X-linked neuroacanthocytosis manifesting with myopathy and progressive chorea. It is caused by mutations of the XK gene encoding the XK protein, a putative membrane transport protein of yet unknown function. In erythroid tissues, XK forms a functional complex with the Kell glycoprotein. Here, we present an immunohistochemical study in skeletal muscle of normal controls and a McLeod patient with a XK gene point mutation (C977T) using affinity-purified antibodies against XK and Kell proteins. Histological examination of the affected muscle revealed the typical pattern of McLeod myopathy including type 2 fiber atrophy. In control muscles, Kell immunohistochemistry stained sarcoplasmic membranes. XK immunohistochemistry resulted in a type 2 fiber-specific intracellular staining that was most probably confined to the sarcoplasmic reticulum. In contrast, there was only a weak background signal without a specific staining pattern for XK and Kell in the McLeod muscle. Our results demonstrate that the lack of physiological XK expression correlates to the type 2 fiber atrophy in McLeod myopathy, and suggest that the XK protein represents a crucial factor for the maintenance of normal muscle structure and function.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have