Abstract
Solving a decades-old problem we show that Keisler's 1967 order on theories has the maximum number of classes. In fact, it embeds P(ω)/fin. The theories we build are simple unstable with no nontrivial forking, and reflect growth rates of sequences which may be thought of as densities of certain regular pairs, in the sense of Szemerédi's regularity lemma. The proof involves ideas from model theory, set theory, and finite combinatorics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.