Abstract

We develop a framework in which Szemeredi's celebrated Regularity Lemma for graphs interacts with core model-theoretic ideas and techniques. Our work relies on a coincidence of ideas from model theory and graph theory: arbitrarily large half-graphs coincide with model-theoretic instability, so in their absence, structure theorems and technology from stability theory apply. In one direction, we address a problem from the classical Szemeredi theory. It was known that the pairs in the statement of Szemeredi's regularity lemma cannot be eliminated, due to the counterexample of half-graphs (i.e., the order property, corresponding to model-theoretic instability). We show that half-graphs are the only essential difficulty, by giving a much stronger version of Szemeredi's regularity lemma for models of stable theories of graphs (i.e. graphs with the non-k�-order property), in which there are no irregular pairs, the bounds are significantly improved, and each component satisfies an condition. In the other direction, we take a more model-theoretic approach, and give several new Szemeredi-type partition theorems for models of stable theories of graphs. The first theorem gives a partition of any such graph into indiscernible components, meaning here that each component is either a complete or an empty graph, whose interaction is strongly uniform. This relies on a finitary version of the classic model-theoretic fact that stable theories admit large sets of indiscernibles, by showing that in models of stable theories of graphs one can extract much larger indiscernible sets than expected by Ramsey's theorem. The second and third theorems allow for a much smaller number of components at the cost of weakening the indivisibility condition on the components. We also discuss some extensions to graphs without the independence property. All graphs are finite and all partitions are equitable, i.e. the sizes of the components differ by at most 1. In the last three theorems, the number of components depends on the size of the graph; in the first theorem quoted, this number is a function ofonly as in the usual Szemeredi regularity lemma.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.