Abstract
Rainfall event separation is mainly based on the selection of the minimum inter-event time (MIET). The traditional approach to determining a suitable MIET for estimating the probability density functions is often using the frequency histograms. However, this approach cannot avoid arbitrariness and subjectivity in selecting the histogram parameters. To overcome the above limitations, this study proposes a kernel density estimation (KDE) approach for rainfall event separation and characterization at any specific site where the exponential distributions are suitable for characterizing the rainfall event statistics. Using the standardized procedure provided taking into account the Poisson and Kolmogorov–Smirnov (K-S) statistical tests, the optimal pair of the MIET and rainfall event volume threshold can be determined. Two climatically different cities, Hangzhou and Jinan of China, applying the proposed approach are selected for demonstration purposes. The results show that the optimal MIETs determined are 12 h for Hangzhou and 10 h for Jinan while the optimal event volume threshold values are 3 mm for both Hangzhou and Jinan. The KDE-based approach can facilitate the rainfall statistical representation of the analytical probabilistic models of urban drainage/stormwater control facilities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.