Abstract

Given two graphs H1 and H2, a graph G is (H1,H2)-free if it contains no induced subgraph isomorphic to H1 or H2. Let Pt be the path on t vertices. A graph G is k-vertex-critical if G has chromatic number k but every proper induced subgraph of G has chromatic number less than k. The study of k-vertex-critical graphs for graph classes is an important topic in algorithmic graph theory because if the number of such graphs that are in a given hereditary graph class is finite, then there is a polynomial-time algorithm to decide if a graph in the class is (k−1)-colorable.In this paper, we initiate a systematic study of the finiteness of k-vertex-critical graphs in subclasses of P5-free graphs. Our main result is a complete classification of the finiteness of k-vertex-critical graphs in the class of (P5,H)-free graphs for all graphs H on 4 vertices. To obtain the complete dichotomy, we prove the finiteness for four new graphs H using various techniques – such as Ramsey-type arguments and the dual of Dilworth's Theorem – that may be of independent interest.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.