Abstract

While it is accepted that NO is responsible for ∼60% of the plateau in cutaneous thermal hyperaemia, a large portion of the response remains unknown. We sought to determine whether the remaining ∼40% could be attributed to EDHF-mediated activation of KCa channels, and whether the epoxyeicosatrienoic acids (EETs), derived via cytochrome P450, were the predominant EDHF active in the response. Four microdialysis fibres were placed in the forearm skin of 20 subjects. In Protocol 1 (n = 10): (1) Control, (2) N(G)-nitro-l-arginine methyl ester (l-NAME), (3) a KCa channel inhibitor, tetraethylammonium (TEA), and (4) TEA + l-NAME. In Protocol 2 (n = 10): (1) Control, (2) l-NAME, (3) a cytochrome P450 inhibitor, sulfaphenazole, and (4) sulfaphenazole + l-NAME. Local heating to 42°C was performed and skin blood flow was measured with laser Doppler flowmetry. Data are presented as the percentage of maximal cutaneous vascular conductance (CVC). All drug sites attenuated plateau CVC from the control site (86 ± 1%) to 79 ± 3% with sulfaphenazole (P = 0.02 from control), 71 ± 3% with TEA (P = 0.01 from control), and further to 38 ± 2% with l-NAME (P < 0.001 from control, P < 0.001 from TEA). Plateau was largely attenuated with sulfaphenazole + l-NAME (24 ± 2%; P = 0.002 from l-NAME), and nearly abolished with l-NAME + TEA (13 ± 2%; P = 0.001 from sulfaphenazole + l-NAME), which was not different from baseline (P = 0.14). Furthermore, the initial peak was just 17 ± 2% with TEA + l-NAME (P < 0.001 from l-NAME). These data suggest EDHFs are responsible for a large portion of initial peak and the remaining 40% of the plateau phase, as administration of TEA in combination with l-NAME abolished the majority of hyperaemia. These data also suggest EETs contribute to about half of the EDHF response.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.