Abstract

AbstractCatalytic air purification; Challenges and new solutions. The integration of regenerative heat exchange into the catalyst bed allows for the autothermal operation of catalytic air purification with a low content of combustible gas. Concentrations corresponding to an adiabatic temperature rise of less then 20 °C can be processed without an additional heat source; in case of higher concentratons a side stream withdrawal allows for the utilization of the total heat of combustion at the highest reactor temperature. The feedback of heat due to the integrated heat exchange gives rise to an unusual reactor behaviour. An analogy of fixed bed reactor operation with countercurrent heat exchange is used to derive simple equations for reactor design and operation. If conventional catalyst packings are replaced by monolithic catalysts, substantial reduction in pressure loss and/or packed bed volume can be obtained. The corresponding relations are briefly discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.