Abstract

Electrospinning is an advantageous technique for cartilage tissue engineering (CTE) applications due to its ability to produce nanofibers recapitulating the size and alignment of the collagen fibers present within the articular cartilage superficial zone. Moreover, coaxial electrospinning allows the fabrication of core-shell fibers able to encapsulate and release bioactive molecules in a sustained manner. Kartogenin (KTG) is a small heterocyclic molecule, which was demonstrated to promote the chondrogenic differentiation of human bone marrow-derived mesenchymal stem/stromal cells(hBMSCs)[1].In this work, we developed and evaluated the biological performance of core-shell poly(glycerol sebacate)(PGS)/poly(caprolactone)(PCL) aligned nanofibers (core:PGS/shell:PCL) mimicking the native articular cartilage extracellular matrix(ECM) and able to promote the sustained release of the chondroinductive drug KTG[2].The produced coaxial aligned PGS/PCL scaffolds were characterized in terms of their structure and fiber diameter, chemical composition, thermal properties, mechanical performance under tensile testing and in vitro degradation kinetics, in comparison to monoaxial PCL aligned fibers and respective non-aligned controls. KTG was incorporated into the core PGS solution to generate core-shell PGS-KTG/PCL nanofibers and its release kinetics was studied by HPLC analysis. KTG-loaded electrospun aligned scaffolds capacity to promote hBMSCs chondrogenic differentiation was evaluated by assessing cell proliferation, typical cartilage-ECM production (sulfated glycosaminiglycans(sGAG)) and chondrogenic marker genes expression in comparison to non-loaded controls. All the scaffolds fabricated showed average fiber diameters within the nanometer-scale and the core-shell structure of the fibers was clearly confirmed by TEM. The coaxial PGS-KTG/PCL nanofibers evidenced a more sustained drug release over 21 days. Remarkably, in the absence of the chondrogenic cytokine TGF-β3, KTG-loaded nanofibers promoted significantly the proliferation and chondrogenic differentiation of hBMSCs, as suggested by the increased cell numbers, higher sGAG amounts and up-regulation of the chondrogenic genes COL2A1, Sox9, ACAN and PRG4 expression. Overall, our results highlight the potential of core-shell PGS-KTG/PCL aligned nanofibers for the development of novel MSC-based CTE strategies.Acknowledgements: The authors thank FCT for funding through the project InSilico4OCReg (PTDC/EME-SIS/0838/2021) and to institutions iBB (UID/BIO/04565/2020) and Associate Laboratory I4HB (LA/P/0140/2020).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call