Abstract

Harmful algal blooms of the toxic dinoflagellate Karenia brevis occur almost annually on the West Florida Shelf (WFS) of the eastern Gulf of Mexico. To date, however, comprehensive assessments of K. brevis bloom spatial extent and temporal occurrence are lacking due to limitations in the two primary bloom monitoring techniques: microscopy evaluation of field-collected water samples and satellite remote sensing of ocean color. This is despite community efforts in expanding sampling coverage statewide and developing remote sensing algorithms to interpret color changes of surface waters. In this work, an approach is developed to combine the strengths of both techniques to estimate mean bloom occurrence frequency and bloom intensity as well as bloom extent at weekly, bi-weekly, monthly, and annual intervals between 2003 and 2019. Here, due to technical constraints on ocean color remote sensing, a bloom is defined as waters with K. brevis concentrations greater than 1.5 × 105 cells L−1. While microscopy examination of surface water samples provides K. brevis cell concentrations to help delineate bloom locations from Moderate Resolution Imaging Spectrometer on Aqua (MODIS/A) images, the imagery provides far more synoptic and frequent observations to make the bloom characterization statistically meaningful. Such derived bloom statistics often show bloom patterns that are not always known previously or at the time of the event, and in some years, they also differ from those determined from microscopic taxonomy data alone. For example, in terms of bloom size, two major bloom periods are observed in 2005 – 2007 and 2014 – 2018, respectively, when annual cumulative bloom size exceeded ∼50,000 km2. While preliminary in nature, the approach and results from this work may represent a first step to integrate water sample analysis and satellite remote sensing towards an improved characterization of K. brevis blooms on the WFS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.