Abstract
Kaposi's sarcoma (KS) is an endothelial tumor causally linked to Kaposi's sarcoma herpesvirus (KSHV) infection. At early stages of KS, inflammation and aberrant neoangiogenesis are predominant, while at late stages the disease is characterized by the proliferation of KSHV-infected spindle cells (SC). Since KSHV infection modifies the endothelial cell (EC) identity, the origin of SCs remains elusive. Yet, pieces of evidence indicate the lymphatic origin. KSHV-infected ECs display increased proliferative, angiogenic and migratory capacities which account for KS oncogenesis. Here we propose a model in which KSHV reprograms the EC identity, induces DNA damage and establishes a dysregulated gene expression program involving interplay of latent and lytic genes allowing continuous reinfection of ECs attracted to the tumor by the secretion of virus-induced cellular factors.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have