Abstract
We explore numerically the boundary Kapitza resistance in one-dimensional chain models with isotopic and/or coupling defects for variety of the inter-particle potentials. In linear models, the Kapitza resistance is well-defined and size-independent (contrary to the bulk heat conduction coefficient), but depends on the parameters of thermostats used in the simulation. For β-FPU model one also encounters the dependence on the thermostats; in addition, the simulated boundary resistance strongly depends on the total system size. Finally, in the models characterized by convergent bulk heat conductivity (chain of rotators, Frenkel-Kontorova model) the boundary resistance is thermostat- and size-independent. In linear chains, the Kapitza resistance is temperature-independent; thus, its temperature dependence allows one to judge on significance of the nonlinear interactions in the phonon scattering processes at the interface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.