Abstract

This study proposes the radial basis function (RBF) based on the Hausdorff fractal distance and then applies it to develop the Kansa method for the solution of the Hausdorff derivative Poisson equations. The Kansa method is a meshless global technique promising for high-dimensional irregular domain problems. It is, however, noted that the shape parameter of the RBFs can have a significant influence on the accuracy and robustness of the numerical solution. Based on the leave-one-out cross-validation algorithm proposed by Rippa, this study presents a new technique to choose the optimal shape parameter of the RBFs with the Hausdorff fractal distance. Numerical experiments show that the Kansa method based on the Hausdorff fractal distance is highly accurate and computationally efficient for the Hausdorff derivative Poisson equations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.