Abstract

We derive stability estimates for three commonly used radial basis function (RBF) methods to solve hyperbolic time-dependent PDEs: the RBF generated finite difference (RBF-FD) method, the RBF partition of unity method (RBF-PUM) and Kansa's (global) RBF method. We give the estimates in the discrete ℓ2-norm intrinsic to each of the three methods. The results show that Kansa's method and RBF-PUM can be ℓ2-stable in time under a sufficiently large oversampling of the discretized system of equations. The RBF-FD method in addition requires stabilization of the spurious jump terms due to the discontinuous RBF-FD cardinal basis functions. Numerical experiments show an agreement with our theoretical observations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.