Abstract

BackgroundThe human KALRN gene, which encodes a complex, multifunctional Rho GDP/GTP exchange factor, has been linked to cardiovascular disease, psychiatric disorders and neurodegeneration. Examination of existing Kalrn knockout mouse models has focused only on neuronal phenotypes. However, Kalirin was first identified through its interaction with an enzyme involved in the synthesis and secretion of multiple bioactive peptides, and studies in C.elegans revealed roles for its orthologue in neurosecretion.ResultsWe used a broad array of tests to evaluate the effects of ablating a single exon in the spectrin repeat region of Kalrn (KalSRKO/KO); transcripts encoding Kalrn isoforms containing only the second GEF domain can still be produced from the single remaining functional Kalrn promoter. As expected, KalSRKO/KO mice showed a decrease in anxiety-like behavior and a passive avoidance deficit. No changes were observed in prepulse inhibition of acoustic startle or tests of depression-like behavior. Growth rate, parturition and pituitary secretion of growth hormone and prolactin were deficient in the KalSRKO/KO mice. Based on the fact that a subset of Kalrn isoforms is expressed in mouse skeletal muscle and the observation that muscle function in C.elegans requires its Kalrn orthologue, KalSRKO/KO mice were evaluated in the rotarod and wire hang tests. KalSRKO/KO mice showed a profound decrease in neuromuscular function, with deficits apparent in KalSR+/KO mice; these deficits were not as marked when loss of Kalrn expression was restricted to the nervous system. Pre- and postsynaptic deficits in the neuromuscular junction were observed, along with alterations in sarcomere length.ConclusionsMany of the widespread and diverse deficits observed both within and outside of the nervous system when expression of Kalrn is eliminated may reflect its role in secretory granule function and its expression outside of the nervous system.

Highlights

  • The human KALRN gene, which encodes a complex, multifunctional Rho GDP/GTP exchange factor, has been linked to cardiovascular disease, psychiatric disorders and neurodegeneration

  • While some Rho-GEFs consist of little more than the catalytic Dbl-homology (DH) domain followed by a pleckstrin homology (PH) domain, Kalirin is a complex protein with multiple catalytic, protein/protein and protein/lipid interaction domains

  • Kalirin is expressed within and outside of the nervous system most studies exploring Kalirin function have focused on its roles in the nervous system, its expression in skeletal muscle, liver and pituitary has been well documented [11,20,30,33]

Read more

Summary

Introduction

The human KALRN gene, which encodes a complex, multifunctional Rho GDP/GTP exchange factor, has been linked to cardiovascular disease, psychiatric disorders and neurodegeneration. Mammalian genomes encode 60–70 Rho GDP/GTP exchange factors (Rho-GEFs) and a similar number of Rho GTPase activating proteins (Rho-GAPs) to control the activation and inactivation of ~20 Rho-family GTPases [1]. The fact that mutations in individual Rho-GEFs are associated with specific disease phenotypes indicates that their functions are not redundant. The mouse Kalrn gene includes multiple promoters and several 30-untranslated regions which produce functionally distinct isoforms in a tissue-specific and developmentally regulated manner [11,12,13]. While some Rho-GEFs consist of little more than the catalytic Dbl-homology (DH) domain followed by a pleckstrin homology (PH) domain, Kalirin is a complex protein with multiple catalytic, protein/protein and protein/lipid interaction domains. The most abundant isoform in the adult brain, Kalirin, is almost exclusively

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.