Abstract

The Mecanum automated guided vehicle (AGV), which can move in any direction by using a special wheel structure with a LIM-wheel and a diagonally positioned roller, holds considerable promise for the field of industrial electronics. A conventional method for Mecanum AGV localization has certain limitations, such as slip phenomena, because there are variations in the surface of the road and ground friction. Therefore, precise localization is a very important issue for the inevitable slip phenomenon situation. So a sensor fusion technique is developed to cope with this drawback by using the Kalman filter. ENCODER and StarGazer were used for sensor fusion. StarGazer is a position sensor for an image recognition device and always generates some errors due to the limitations of the image recognition device. ENCODER has also errors accumulating over time. On the other hand, there are no moving errors. In this study, we developed a Mecanum AGV prototype system and showed by simulation that we can eliminate the disadvantages of each sensor. We obtained the precise localization of the Mecanum AGV in a slip phenomenon situation via sensor fusion using a Kalman filter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.