Abstract

The perception and navigation of autonomous vehicles heavily rely on the utilization of sensor technology and the integration of sensor fusion techniques, which play an essential role in ensuring a secure and proficient understanding of the vehicle's environment.This paper highlights the significance of sensors in autonomous vehicles and how sensor fusion techniques enhance their capabilities. Firstly, the paper introduces the different types of sensors commonly used in autonomous vehicles and explains their principles of operation, strengths, and limitations in capturing essential information about the vehicles environment. Next, the paper discusses various sensor fusion algorithms, such as Kalman filters and particle filters. Furthermore, the paper explores the challenges associated with sensor fusion and addresses the issue of handling sensor failures or uncertainties. The benefits of sensor fusion technology in autonomous vehicles are also presented. These include improved perception of the environment, enhanced object recognition and tracking, better trajectory planning, and enhanced safety through redundancy and fault tolerance. Lastly, the paper discusses the advancements and highlights the integration of artificial intelligence and machine learning techniques to optimize sensor fusion algorithms and improve the overall autonomy of the vehicle. Following thorough analysis, the deduction can be made that sensor and sensor fusion technology assume a critical function in facilitating efficient and secure autonomous vehicle navigation within intricate surroundings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call