Abstract

AbstractThe use of orthogonal frequency division multiplexing (OFDM) in frequency‐selective fading environments has been well explored. However, OFDM is more prone to time‐selective fading compared with single‐carrier systems. Rapid time variations destroy the subcarrier orthogonality and introduce inter‐carrier interference (ICI). Besides this, obtaining reliable channel estimates for receiver equalization is a non‐trivial task in rapidly fading systems. Our work addresses the problem of channel estimation and ICI suppression by viewing the system as a state‐space model. The Kalman filter is employed to estimate the channel; this is followed by a time‐domain ICI mitigation filter that maximizes the signal‐to‐interference plus noise ratio (SINR) at the receiver. This method is seen to provide good estimation performance apart from significant SINR gain with low training overhead. Suitable bounds on the performance of the system are described; bit error rate (BER) performance over a time‐invariant Rayleigh fading channel serves as the lower bound, whereas BER performance over a doubly selective system with ICI as the dominant impairment provides the upper bound. Copyright © 2008 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.