Abstract
Kaempferol (KMP), a bioactive flavonoid compound found in fruits and vegetables, contributes to human health in many ways but little is known about its relationship with muscle mass. The effect of KMP on C2C12 myoblast differentiation and the mechanisms that might underlie that effect are studied. This study finds that KMP (1, 10µM) increases the migration and differentiation of C2C12 myoblasts in vitro. Studying the possible mechanism underlying its effect on migration, the study finds that KMP activates Integrin Subunit Beta 1 (ITGB1) in C2C12 myoblasts, increasing p-FAK (Tyr398) and its downstream cell division cycle 42 (CDC42), a protein previously associated with cell migration. Regarding differentiation, KMP upregulates the expression of myosin heavy chain (MHC) and activates IGF1/AKT/mTOR/P70S6K. Interestingly, pretreatment with an AKT inhibitor (LY294002) and siRNA knockdown of IGF1R leads to a decrease in cell differentiation, suggesting that IGF1/AKT activation is required for KMP to induce C2C12 myoblast differentiation. Together, the findings suggest that KMP enhances the migration and differentiation of C2C12 myoblasts through the ITG1B/FAK/paxillin and IGF1R/AKT/mTOR pathways. Thus, KMP supplementation might potentially be used to prevent or delay age-related loss of muscle mass and help maintain muscle health.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.