Abstract
The purpose of this study was to optimize scan parameters for evaluation of carotid plaque characteristics by k-space trajectory (radial scan method), using a custom-made carotid plaque phantom. The phantom was composed of simulated sternocleidomastoid muscle and four types of carotid plaque. The effect of chemical shift artifact was compared using T1 weighted images (T1WI) of the phantom obtained with and without fat suppression, and using two types of k-space trajectory (the radial scan method and the Cartesian method). The ratio of signal intensity of simulated sternocleidomastoid muscle to the signal intensity of hematoma, blood (including heparin), lard, and mayonnaise was compared among various repetition times (TR) using T1WI and T2 weighted imaging (T2WI). In terms of chemical shift artifacts, image quality was improved using fat suppression for both the radial scan and Cartesian methods. In terms of signal ratio, the highest values were obtained for the radial scan method with TR of 500 ms for T1WI, and TR of 3000 ms for T2WI. For evaluation of carotid plaque characteristics using the radial scan method, chemical shift artifacts were reduced with fat suppression. Signal ratio was improved by optimizing the TR settings for T1WI and T2WI. These results suggest the potential for using magnetic resonance imaging for detailed evaluation of carotid plaque.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.