Abstract
In order to clarify the role of inactivating and noninactivating K+ conductances in nonspiking neurons, we developed an isopotential model of the Drosophila photoreceptor membrane based on Hodgkin-Huxley-type equations. The model includes voltage dependent potassium conductances, the shaker (gKA) and the delayed rectifier (gKs). The model parameters were derived from published results by Hardie and coworkers and nearly identical model was used also in our previous work (J. E. Niven, M. Vähäsöyrinki, M. Kauranen, R. C. Hardie, M. Juusola, and M. Weckström. The Contribution of shaker K+ channels to the information capacity of Drosophila photoreceptors. Nature. 421:630-634, 2003). The model explains how the two types of channels function together to define the voltage dependent properties of the photoreceptor membrane. Additionally the model enables us to run simulations of conditions which are difficult to achieve in patch clamp, like prolonged membrane depolarizations by light adaptation. Effects of the activation of the delayed rectifier type conductance were found to be in accordance with published experimental work but the inactivation of the shaker channels, in addition to its importance in the determination of the resting potential, produced voltage amplification over equivalent passive membrane under dark adapted conditions. This phenomenon was not present in light adapted conditions. The modulation of the voltage dependence of the conductances as reported by serotonin (5-HT) caused the shaker to act essentially like the delayed rectifier conductance.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have