Abstract

When plants detect herbivores they strengthen their defenses. As a consequence, some herbivores evolved the means to suppress these defenses. Research on induction and suppression of plant defenses usually makes use of particular life stages of herbivores. Yet many herbivorous arthropods go through development cycles in which their successive stages have different characteristics and lifestyles. Here we investigated the interaction between tomato defenses and different herbivore developmental stages using two herbivorous spider mites, i.e., Tetranychus urticae of which the adult females induce defenses and T. evansi of which the adult females suppress defenses in Solanum lycopersicum (tomato). First, we monitored egg-to-adult developmental time on tomato wild type (WT) and the mutant defenseless-1 (def-1, unable to produce jasmonate-(JA)-defenses). Then we assessed expression of salivary effector genes (effector 28, 84, SHOT2b, and SHOT3b) in the consecutive spider mite life stages as well as adult males and females. Finally, we assessed the extent to which tomato plants upregulate JA- and salicylate-(SA)-defenses in response to the consecutive mite developmental stages and to the two sexes. The consecutive juvenile mite stages did not induce JA defenses and, accordingly, egg-to-adult development on WT and def-1 did not differ for either mite species. Their eggs however appeared to suppress the SA-response. In contrast, all the consecutive feeding stages upregulated SA-defenses with the strongest induction by T. urticae larvae. Expression of effector genes was higher in the later developmental stages. Comparing expression in adult males and females revealed a striking pattern: while expression of effector 84 and SHOT3b was higher in T. urticae females than in males, this was the opposite for T. evansi. We also observed T. urticae females to upregulate tomato defenses, while T. evansi females did not. In addition, of both species also the males did not upregulate defenses. Hence, we argue that mite ontogenetic niche shifts and stage-specific composition of salivary secreted proteins probably together determine the course and efficiency of induced tomato defenses.

Highlights

  • To assess the extent to which stage-specific developmental times of inducer and suppressor mites were affected by jasmonic acid (JA)-dependent defense, we monitored the duration of the larval and the two nymphal stages of T. urticae and T. evansi males and females on leaf disks of Castlemart tomato plants (WT) and on disks of the JA-biosynthesis mutant def-1

  • We demonstrated that inducible JA defenses do not significantly alter developmental time or survival of T. urticae Santpoort-2 and T. evansi Viçosa-1 males and females and do not affect the spider mite sex ratio

  • We showed that only T. urticae Santpoort-2 adult females upregulate the expression of tomato JA-marker gene PI-IIc, while T. evansi Viçosa-1 larvae downregulate the expression of this gene

Read more

Summary

Introduction

Plants sometimes establish so-called indirect defenses by attracting and/or arresting foraging predators or host seeking parasitoids, e.g., via the production of volatile attractants or the provision of shelter or alternative food (Sabelis, 1999; Sabelis et al, 2001). These defenses are regulated mainly by two central phytohormones: (a) jasmonic acid (JA) which orchestrates the defenses against herbivores (Howe and Jander, 2008) and necrotrophic pathogens (Glazebrook, 2005) and (b) salicylic acid (SA) which primarily organizes defenses against biotrophic pathogens and phloem-feeding herbivores (Kaloshian and Walling, 2005). Suppression brings opportunities for non-suppressor mites to benefit from the lowered defenses when feeding on the same patch (Kant et al, 2008; Sarmento et al, 2011a; Glas et al, 2014; Alba et al, 2015; Schimmel et al, 2017a; Schimmel et al, 2017b) giving rise to complex community interactions (Blaazer et al, 2018)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call