Abstract
Heavy elements, even though its smaller constituent, are crucial to understand Jupiter formation history. Interior models are used to determine the amount of heavy elements in Jupiter interior, nevertheless this range is still subject to degeneracies due to uncertainties in the equations of state. Prior to Juno mission data arrival, we present Jupiter optimized calculations exploring the effect of different model parameters in the determination of Jupiter's core and heavy element's mass. We perform comparisons between equations of state published recently. The interior model of Jupiter is calculated from the equations of hydrostatic equilibrium, mass and energy conservation, and energy transport. The mass of the core and heavy elements is adjusted to match Jupiter's observational constrains radius and gravitational moments. We show that the determination of Jupiter interior structure is tied to the estimation of its gravitational moments and the accuracy of equations of state of hydrogen, helium and heavy elements. The location of the region where Helium rain occurs as well as its timescale are important to determine the distribution of heavy elements and helium in the interior of Jupiter. We show that differences find when modeling Jupiter's interior with recent EOS are more likely due to differences in the internal energy and entropy calculation. The consequent changes in the thermal profile lead to different estimations of the mass of the core and heavy elements, explaining differences in recently published Jupiter interior models. Our results help clarify differences find in Jupiter interior models and will help the interpretation of upcoming Juno data.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have