Abstract

Junctionless transistors are suitable for sub-3 nm applications because of their extremely simple structure and high electrical performance, which compensate for short-channel effects. Two-dimensional semiconductor transition-metal dichalcogenide materials, such as MoS2, may also resolve technical and fundamental issues for Si-based technology. Here, we present the first junctionless electric-double-layer field-effect transistor with an electrostatically highly doped 5 nm thick MoS2 channel. A double-gated MoS2 transistor with an ionic-liquid top gate and a conventional bottom gate demonstrated good transfer characteristics with a 104 on-off current ratio, a 70 mV dec-1 subthreshold swing at a 0 V bottom-gate bias, and drain-current versus top-gate-voltage characteristics were shifted left significantly with increasing bottom-gate bias due to an electrostatically increased overall charge carrier concentration in the MoS2 channel. When a bottom-gate bias of 80 V was applied, a shoulder and two clear peak features were identified in the transconductance and its derivative, respectively; this outcome is typical of Si-based junctionless transistors. Furthermore, the decrease in electron mobility induced by a transverse electric field was reduced with increasing bottom-gate bias. Numerical simulations and analytical models were used to support these findings, which clarify the operation of junctionless MoS2 transistors with an electrostatically highly doped channel.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call