Abstract

A series of ZnmIn2S3+m photocatalysts were synthesized to show tunable band gap energy with the variation of Zn/S atomic ratio. The junction of ZnmIn2S3+m and BiVO4 led to intimate interfacial contacts. Both experimental and theoretical results implied that electrons flowed from ZnmIn2S3+m to BiVO4 at the ZnmIn2S3+m/BiVO4 interface to form built-in electric field due to the variation of Fermi level, which promised Z scheme charge transfer feature for improving separation of charge carriers for enhanced photocatalytic performance. A higher degree of charge transfer process occurred for Zn2In2S5/BiVO4 heterostructure promised stronger built-in electric field, higher charge separation efficiency and improved photocatalytic activity in comparison to ZnIn2S4/BiVO4 and Zn3In2S6/BiVO4 heterojunctions. The optimal hydrogen production rate of Zn2In2S5/BiVO4 photocatalyst is 8.42 mmol•g−1•h−1 with apparent quantum yield of 22.32 % at 435 nm, which is about 2.2 and 1.5 times higher than that of ZnIn2S4/BiVO4 and Zn3In2S6/BiVO4, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.