Abstract
The junction temperature of AlGaN ultraviolet light-emitting diodes emitting at 295nm is measured by using the temperature coefficients of the diode forward voltage and emission peak energy. The high-energy slope of the spectrum is explored to measure the carrier temperature. A linear relation between junction temperature and current is found. Analysis of the experimental methods reveals that the diode-forward voltage is the most accurate (±3°C). A theoretical model for the dependence of the diode forward voltage (Vf) on junction temperature (Tj) is developed that takes into account the temperature dependence of the energy gap. A thermal resistance of 87.6K∕W is obtained with the device mounted with thermal paste on a heat sink.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.