Abstract

Several real-time short-term prediction methods, based on time-series modeling of past continuous glucose monitoring (CGM) sensor data have been proposed with the aim of allowing the patient, on the basis of predicted glucose concentration, to anticipate therapeutic decisions and improve therapy of type 1 diabetes. In this field, neural network (NN) approaches could improve prediction performance handling in their inputs additional information. In this contribution we propose a jump NN prediction algorithm (horizon 30min) that exploits not only past CGM data but also ingested carbohydrates information. The NN is tuned on data of 10 type 1 diabetics and then assessed on 10 different subjects. Results show that predictions of glucose concentration are accurate and comparable to those obtained by a recently proposed NN approach (Zecchin et al. (2012) [26]) having higher structural and algorithmical complexity and requiring the patient to announce the meals. This strengthen the potential practical usefulness of the new jump NN approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.