Abstract

We study the hardness of the optimal jug measuring problem. By proving tight lower and upper bounds on the minimum number of measuring steps required, we reduce an inapproximable NP-hard problem (i.e., the shortest GCD multiplier problem [G. Havas, J.-P. Seifert, The Complexity of the Extended GCD Problem, in: LNCS, vol. 1672, Springer, 1999]) to it. It follows that the optimal jug measuring problem is NP-hard and so is the problem of approximating the minimum number of measuring steps within a constant factor. Along the way, we give a polynomial-time approximation algorithm with an exponential error based on the well-known LLL basis reduction algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.