Abstract

Ca²⁺ leak from the sarcoplasmic reticulum (SR) via ryanodine receptors (RyR2s) contributes to cardiomyocyte dysfunction. RyR2 Ca²⁺ leak has been related to RyR2 phosphorylation. In these conditions, JTV519 (K201), a 1,4-benzothiazepine derivative and multi-channel blocker, stabilizes RyR2s and decrease SR Ca²⁺ leak. We investigated whether JTV519 stabilizes RyR2s without increasing RyR2 phosphorylation in mice and in non-failing human myocardium and explored underlying mechanisms. SR Ca²⁺ leak was induced by ouabain in murine cardiomyocytes. [Ca²⁺]-transients, SR Ca²⁺ load and RyR2-mediated Ca²⁺ leak (sparks/waves) were quantified, with or without JTV519 (1 µmol·L⁻¹). Contribution of Ca²⁺ -/calmodulin-dependent kinase II (CaMKII) was assessed by KN-93 and Western blot (RyR2-Ser(2814) phosphorylation). Effects of JTV519 on contractile force were investigated in non-failing human ventricular trabeculae. Ouabain increased systolic and diastolic cytosolic [Ca²⁺](i) , SR [Ca²⁺], and SR Ca²⁺ leak (Ca²⁺ spark (SparkF) and Ca²⁺ wave frequency), independently of CaMKII and RyR-Ser(2814) phosphorylation. JTV519 decreased SparkF but also SR Ca²⁺ load. At matched SR [Ca²⁺], Ca²⁺ leak was significantly reduced by JTV519, but it had no effect on fractional Ca²⁺ release or Ca²⁺ wave propagation velocity. In human muscle, JTV519 was negatively inotropic at baseline but significantly enhanced ouabain-induced force and reduced its deleterious effects on diastolic function. JTV519 was effective in reducing SR Ca²⁺ leak by specifically regulating RyR2 opening at diastolic [Ca²⁺](i) in the absence of increased RyR2 phosphorylation at Ser(2814) , extending the potential use of JTV519 to conditions of acute cellular Ca²⁺ overload.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call