Abstract

Super-resolution (SR) and image enhancement (IE) are two common and important tasks in image processing. Due to poor equipment, illumination, and photographic skills, many low-resolution and low-quality (in terms of color, and contrasts) photos are captured in our daily life. To make the photos more visually pleasing, we usually enlarge and retouch them in two separate steps. In this paper, we propose a new Joint Image Super-resolution and Enhancement Network (JSENet), which is arguably the first end-to-end method based on deep learning for joint SR and IE. Compared with simply conducting these two tasks in parallel or sequentially, JSENet employs the bilateral learning framework to integrate the two tasks together seamlessly. Meanwhile, two lightweight modules are designed for restoring details and generating color transformation coefficients respectively, which ensures that our JSENet can be deployed in real-world applications. Extensive experiments are conducted to demonstrate that JSENet outperforms the state-of-the-art SR-IE methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.