Abstract

This study evaluates the performance of continuous flow adsorbers for adsorptive desulfurization. JP-8 fuel with 2,230 ppmw of sulfur was treated in a flow-through adsorber packed with CuNa-Y zeolite pellets and operating at 180 °C and 200 psig with liquid hourly space velocities (LHSV) from 0.13 to 3.24 h-1. Our results showed that a flow-through adsorber operating at these conditions can effectively reduce the sulfur content of JP-8 to ultra-low values (1-10 ppmw) over the entire LHSV range tested, although the overall performance of the adsorber declined with increasing flow rates as expected. We also observed that the total sulfur removal exceeded the theoretical adsorption limit of our zeolite adsorbent. Detailed characterization of the treated fuel and spent adsorbent via chromatographic and surface analysis techniques revealed that desulfurization occurs in two stages. Sulfur is initially removed via adsorption (chemisorption) on the CuNa-Y zeolite, an assertion supported by simulations with a transient heterogeneous model. As the adsorbent becomes saturated, however, surface chemical reactions start taking place leading to the formation of hydrogen sulfide and polymerization products, and depositing carbon residue on the zeolite. The spent adsorbent was regenerated by treating it with air at 550 or 600 °C, which restored the adsorption capacity of the material to about 90% of its initial value.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call