Abstract

AbstractThe afternoon Joule heating hot spot has been studied statistically by using the EISCAT Svalbard Radar (ESR) measurements at 75.4° Corrected Geomagnetic latitude (CGMLAT) and the OMNI solar wind data base. For a small subset of events, the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) field‐aligned current distributions have been available. The main results are as follows. Afternoon Joule heating hot spots are associated with high values of ionospheric electric fields and slightly enhanced Pedersen conductances. The Joule heating hot spot values are larger in summer than in winter, which can be explained by the higher Pedersen conductances during summer than winter. The afternoon Joule heating hot spots are located close to the reversals of the large‐scale field‐aligned current systems. The most common location is close to the Region 1/Region 2 boundary and those events are associated with sunward convecting F region plasma. In a few cases, the hot spots take place close to the Region 1/Region 0 boundary and then the ionospheric plasma is convecting antisunward. The hot spots may occur both during slow (<450 km/s) and high (>450 km/s) speed solar wind conditions. During slow‐speed solar wind events, the dominant interplanetary magnetic field (IMF) direction is southward, which is the general requirement for the low‐latitude magnetic merging at the dayside magnetopause. During high‐speed solar wind, also northward IMF conditions appear, but those are associated with large values of the IMF |By| component, making again the dayside magnetopause merging possible. Finally, the measured afternoon hot spot Joule heating rates are not a linear function of the solar wind energy coupling function.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.