Abstract
In this work, we study the nonlinear Josephson dynamics of Fermi superfluids in the crossover from Bardeen–Cooper–Schrieffer (BCS) superfluid to a molecular Bose-Einstein condensate (BEC) in a double-well potential. Under a two-mode approximation, we derive a full two-mode (fTM) model including all interaction energy terms. By solving the fTM model numerically, we study the zero-phase and [Formula: see text]-phase modes of Josephson oscillations in the BCS–BEC crossover. We find that in the strongly interacting regime the cross interaction terms not appearing in the two-mode model cannot be easily ignored. The cross interactions can alter the behaviors of Josephson dynamics substantially, and interestingly the alterations for the zero-phase and [Formula: see text]-phase modes are just opposite.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.