Abstract

Although the basic concept of a stellarator was known since the early days of fusion research, advances in computational technology have enabled the modeling of increasingly complicated devices, leading up to the construction of Wendelstein 7-X, which has recently shown promising results. This recent success has revived interest in the nonlinear 3D MHD modeling of stellarators in order to better understand their performance and operational limits. This study reports on the extension of the JOREK code to 3D geometries and on the first stellarator simulations carried out with it. The first simple simulations shown here address the classic Wendelstein 7-A stellarator using a reduced MHD model previously derived by us. The results demonstrate that stable full MHD equilibria are preserved in the reduced model: the flux surfaces do not move throughout the simulation and closely match the flux surfaces of the full MHD equilibrium. Furthermore, both tearing and ballooning modes were simulated, and the linear growth rates measured in JOREK are in reasonable agreement with the growth rates from the CASTOR3D linear MHD code.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.