Abstract
This paper investigates a three-node amplify-and-forward (AF) multiple-input multiple-output (MIMO) relay network, where an autonomous relay harvests power from the source information flow and is further helped by an energy flow in the form of a wireless power transfer (WPT) at the destination. An energy-flow-assisted two-phase relaying scheme is proposed, where a source and relay joint optimization is formulated to maximize the rate. By diagonalizing the channel, the problem is simplified to a power optimization, where a relay channel pairing problem is solved by an ordering operation. The proposed algorithm, which iteratively optimizes the relay and source power, is shown to converge. Closed-form solutions can be obtained for the separate relay and source optimizations. Besides, a two-phase relaying without energy flow is also studied. Simulation results show that the energy-flow-assisted scheme is beneficial to the rate enhancement, if the transmit power of the energy flow is adequately larger than that of the information flow. Otherwise, the scheme without energy flow would be preferable.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have