Abstract

Integrated sensing and communication (ISAC) technique has been viewed as a promising component in future network. A major challenge for ISAC systems is that the constraint introduced by sensing functionality will constrain the degrees of freedom in waveform design and results in large multi-user interference (MUI), thus degrading the communication performance. In this paper, we study the employment of RIS in mitigating MUI in ISAC systems. For practical consideration, we investigate joint constant-modulus waveform and discrete RIS phase shift design, with the aim of minimizing MUI under the Cramer-Rao bound (CRB) constraint for direction of arrival (DOA) estimation. An alternating optimization algorithm is proposed to solve the formulated problem, and two schemes are proposed to deal with the discrete RIS phase shifts. Simulation results show that the proposed algorithm can dramatically improve the sum rate, and the performance under moderate phase shift quantization level is close to that under continuous phase shifts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.