Abstract

In this paper, we combine simultaneous transmitting and reflecting reconfigurable intelligent surface (STAR-RIS) with rate-splitting multiple access (RSMA) technology and investigate the ergodic rate performance of an STAR-assisted RSMA system. Considering the discrete phase shifts of the STAR-RIS in practice, the downlink performance of STAR-RIS-assisted RSMA with discrete phase shifts is compared to that with continuous phase shifts. Firstly, the cumulative distribution function of signal-to-interference-plus-noise ratio (SINR) of users is analyzed. Then, the total ergodic rate of the system and its approximate closed-form solution are, respectively, derived based on the cumulative distribution function of users. The simulation results validate the effectiveness of the theoretical analysis, showing good agreement between the derived theoretical ergodic rate and the corresponding simulations. Although the system performance with discrete phase shifts is inferior to that with continuous phase shifts due to quantization errors, the performance of the continuous phase shift system is well approximated when the quantization bit of the phase shift system reaches 3 in the simulations. Additionally, the impact of the number of STAR-RIS elements on the system's performance is analyzed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.