Abstract

FinFET has been proposed as an alternative for bulk CMOS in current and future technology nodes due to more effective channel control, reduced random dopant fluctuation, high ON/OFF current ratio, lower energy consumption, etc. Key characteristics of FinFET operating in the sub/near-threshold region are very different from those in the strong-inversion region. This paper first introduces an analytical transregional FinFET model with high accuracy in both sub- and near-threshold regimes. Next, the paper extends the well-known and widely-adopted logical effort delay calculation and optimization method to FinFET circuits operating in multiple voltage (sub/near/super-threshold) regimes. More specifically, a joint optimization of gate sizing and adaptive independent gate control is presented and solved in order to minimize the delay of FinFET circuits operating in multiple voltage regimes. Experimental results on a 32nm Predictive Technology Model for FinFET demonstrate the effectiveness of the proposed logical effort-based delay optimization framework.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.